Remagnetization of Carboniferous Limestone in the Zaduo Area, Eastern Qiangtang Terrane, and Its Tectonic Implications

Author:

Yu Liang,Yan Maodu,Guan Chong,Li Bingshuai,Fu Qiang,Xu Wanlong,Feng Zhantao,Zhang Dawen,Shen Miaomiao,Xu Zunbo,Niu Zhichao

Abstract

Robust paleomagnetic results through geological time are one of the keys to understand the drift history of the eastern Qiangtang terrane (EQT). Here, we presented comprehensive petrographic observations and rock magnetic and paleomagnetic analyses of the early Carboniferous Upper Zaduo (ZD) limestone Formation (C1z2) from the Sulucun (SLC) section in the Zaduo area, EQT, to investigate its magnetic originality and geological significance. A total of 12 sites (131 samples) were collected. Photomicrograph observations indicate that the limestone samples were characterized by widespread carbonate veinlets. Electron microprobe and energy dispersive spectrometry analyses confirm that authigenic magnetite formed after pyrite. Rock magnetic analyses reveal the dominant magnetic minerals of pyrite and magnetite, with ‘wasp-waisted’ hysteresis loops and close to the “remagnetization trend” hysteresis parameters. Based on both thermal and alternating field demagnetizations, the characteristic remanent magnetization directions for most samples were isolated: Dg = 6.3°, Ig = 50.1°, kg = 54.9, α95 = 6.2° in-situ, and Ds = 330.2°, Is = 58.9°, ks = 5.9, and α95 = 20.5° after 2-step tilt correction. The κ (α95) value decreases (increases) after tilt-correction, and the ChRM directions failed both the McFadden (1990), Watson and Enkin (1993) fold tests, indicating post-folding magnetizations. The 11 site-mean directions yield a mean in-situ paleopole of 84.4°N, 200.3°E, and A95 = 6.8°, which is coincident with the post ∼53 Myr (especially around 40 Ma) paleopoles of the region. We therefore interpreted that these early Carboniferous limestone samples contain remagnetized magnetizations and that they were obtained after 53 Ma, most likely around 40 Ma, due to the far-field effect of the India–Eurasia collision.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3