Remagnetization of the Upper Permian–Lower Triassic limestones in the western Lhasa Terrane and its tectonic implications

Author:

Bian Weiwei12,Jiao Xianwei1,Wang Suo1ORCID,Liang Jiacheng1,Ma Jiahui1,Ding Jikai1,Zhao Hanqing1,Yang Tianshui1,Zhang Shihong1,Wu Huaichun1,Li Haiyan1,Deng Chenglong2

Affiliation:

1. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Beijing 100083 , China

2. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences , Beijing 100029 , China

Abstract

SUMMARY The drift history of the Lhasa terrane plays an essential role in understanding the tectonic evolution of the Bangong-Nujiang Tethyan Ocean and the Neo-Tethyan Ocean, as well as the evolutionary history of the Tibetan Plateau. Here, a combined rock magnetic, petrographic, and palaeomagnetic study is performed on the Upper Permian–Lower Triassic limestones (∼259–251 Ma) in the western Lhasa terrane. The site-mean direction for the 28 sites is Dg = 32.1°, Ig = 50.3°, kg = 47.9 and α95 = 4.0° in situ and Ds = 342.9°, Is = 32.7°, ks = 43.2 and α95 = 4.2° after tilt-correction, yielding a palaeopole at 68.9°N, 314.4°E with A95 = 4.3°, corresponding to a palaeolatitude of 18.0° ± 4.3°N. The fold tests are not significant because the sampling section shows monoclinic features with minor variations in their bedding attitudes. The palaeopoles for the directions before and after tilt-correction are compared with reliable Late Permian–Palaeogene palaeopoles obtained from the Lhasa terrane. Based on these comparisons, the studied limestones were remagnetized prior to tilting and this remagnetization most likely occurred during the Early Cretaceous. The depositional environment of the limestones may have changed from anoxic to suboxic and oxic during the Early Cretaceous, leading to the oxidation of iron sulphide to authigenic magnetite. Meanwhile, the Late Jurassic–Early Cretaceous convergence between the western Lhasa and Qiangtang terranes may have resulted in tectonic fluid migration and the formation of calcite veins and stylolites in the limestones. This is supported by the presence of small calcite veins and stylolites in some samples, as well as the fact that the framboidal oxides were formerly sulphides (mostly pyrite), implying that the majority of the iron oxides observed in the limestones were authigenic. These processes indicate that chemical remanent magnetization caused by the growth of magnetic minerals related to tectonic fluid migration was most likely the mechanism for the limestone remagnetization.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3