Affiliation:
1. State Key Laboratory of Lithospheric Evolution Institute of Geology and Geophysics Chinese Academy of Sciences Beijing China
2. College of Earth and Planetary Sciences University of Chinese Academy of Sciences Beijing China
3. Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER) Institute of Tibetan Plateau Research Chinese Academy of Sciences Beijing China
4. State Key Laboratory of Biogeology and Environmental Geology China University of Geosciences Beijing China
Abstract
AbstractCarbonate rocks, widely used for quantifying paleolatitude of the Gondwana‐derived terranes on the Tibetan Plateau and the geodynamic evolution of the Tethyan Oceans, are prone to remagnetization. However, diagnosing such secondary remanent magnetization is difficult and the mistakes have induced confusion in paleogeographic reconstructions. To evaluate if the Upper Triassic limestones of the Duoburi Formation from the Lhasa terrane carry a primary remanence, we report comprehensive rock magnetic, diffuse reflectance spectroscopic, and petrographic results of these rocks. We discover that magnetic carriers vary systematically from magnetite to magnetite plus minor hematite/goethite to hematite/goethite plus minor magnetite with change of rock color and demagnetization behavior of the specimens. Most magnetite and all hematite/goethite grains have clear authigenic origin and were possibly formed during oxidation of early diagenetic pyrite. Such a process was likely assisted by oxic fluid circulation as shown by omnipresent calcite veins within the rocks. These authigenic iron oxides have widely distributed grain sizes with most of them being superparamagnetic at room temperature. Detrital (titano)magnetite is also recognized in some specimens, but its concentration is much lower than that of the authigenic magnetic grains. Based on these results, we conclude that limestone from the Duoburi Formation was remagnetized due to fluid circulation during late diagenesis. We discuss criteria used for diagnosing remagnetization in carbonate rocks, and suggest that a robust evaluation of the remanence origin should integrate field tests, statistics of the remanence direction, rock magnetic properties, and petrographic observations with the limits of each criterion being carefully considered.
Publisher
American Geophysical Union (AGU)