Author:
Wang Zhiyong,Li Lu,Yu Yaran,Wang Jian,Li Zhenjin,Liu Wei
Abstract
Large-scale and high-intensity mining underground coal has resulted in serious land subsidence. It has caused a lot of ecological environment problems and has a serious impact on the sustainable development of economy. Land subsidence cannot be accurately monitored by InSAR (interferometric synthetic aperture radar) due to the low coherence in the mining area, excessive deformation gradient, and the atmospheric effect. In order to solve this problem, a novel phase unwrapping method based on U-Net convolutional neural network was constructed. Firstly, the U-Net convolutional neural network is used to extract edge to automatically obtain the boundary information of the interferometric fringes in the region of subsidence basin. Secondly, an edge-linking algorithm is constructed based on edge growth and predictive search. The interrupted interferometric fringes are connected automatically. The whole and continuous edges of interferometric fringes are obtained. Finally, the correct phase unwrapping results are obtained according to the principle of phase unwrapping and the wrap-count (integer jump of 2π) at each pixel by edge detection. The Huaibei Coalfield in China was taken as the study area. The real interferograms from D-InSAR (differential interferometric synthetic aperture radar) processing used Sentinel-1A data which were used to verify the performance of the new method. Subsidence basins with clear interferometric fringes, interrupted interferometric fringes, and confused interferometric fringes are selected for experiments. The results were compared with the other methods, such as MCF (minimum cost flow) method. The tests showed that the new method based on U-Net convolutional neural network can resolve the problem that is difficult to obtain the correct unwrapping phase due to interrupted or partially confused interferometric fringes caused by low coherence or other reasons in the coal mining area. Hence, the new method can help to accurately monitor the subsidence in mining areas under different conditions using InSAR technology.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献