A Lightweight Anchor-Free Subsidence Basin Detection Model With Adaptive Sample Assignment in Interferometric Synthetic Aperture Radar Interferogram

Author:

Yu Yaran,Wang Zhiyong,Li Zhenjin,Ye Kaile,Li Hao,Wang Zihao

Abstract

The excessive exploitation of coal resources has caused serious land subsidence, which seriously threatens the lives of the residents and the ecological environment in coal mining areas. Therefore, it is of great significance to precisely monitor and analyze the land subsidence in the mining area. To automatically detect the subsidence basins in the mining area from the interferometric synthetic aperture radar (InSAR) interferograms with wide swath, a lightweight model for detecting the subsidence basins with an anchor-free and adaptive sample assignment based on the YOLO V5 network, named Light YOLO-Basin model, is proposed in this paper. First, the depth and width scaling of the convolution layers and the depthwise separable convolution are used to make the model lightweight to reduce the memory consumption of the CSPDarknet53 backbone network. Furthermore, the anchor-free detection box encoding method is used to deal with the inapplicability of the anchor box parameters, and an optimal transport assignment (OTA) adaptive sample assignment method is introduced to solve the difficulty of optimizing the model caused by abandoning the anchor box. To verify the accuracy and reliability of the proposed model, we acquired 62 Sentinel-1A images over Jining and Huaibei coalfield (China) for the training model and experimental verification. In contrast with the original YOLO V5 model, the mean average precision (mAP) value of the Light YOLO-Basin model increases from 45.92 to 55.12%. The lightweight modules of the model sped up the calculation with the one billion floating-point operations (GFLOPs) from 32.81 to 10.07 and reduced the parameters from 207.10 to 40.39 MB. The Light YOLO-Basin model proposed in this paper can effectively recognize and detect the subsidence basins in the mining areas from the InSAR interferograms.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3