Retrieving Three-Dimensional Large Surface Displacements in Coal Mining Areas by Combining SAR Pixel Offset Measurements with an Improved Mining Subsidence Model

Author:

Chen BingqianORCID,Mei Han,Li ZhenhongORCID,Wang Zhengshuai,Yu Yang,Yu Hao

Abstract

Interferometric synthetic aperture radar (InSAR) technology can obtain one-dimensional surface displacements in the radar line of sight (LOS). In the field of mining subsidence, large 3D movements often occur at the same time, and hence InSAR derived one-dimensional LOS displacements can hardly reflect the actual surface motion in mining areas. To realize the monitoring of three-dimensional large surface displacements in mining areas, a method for monitoring three-dimensional large surface displacements in mining areas that combines SAR pixel offset tracking (OT) and an improved mining subsidence model is proposed in this article. First, a new functional relationship between surface subsidence and horizontal movement combined with the characteristics of the overburden rock stress and the deformation characteristics of the fractured rock mass in coal mining areas is established. Then, a three-dimensional surface deformation model is established based on the proposed relationship between surface subsidence and horizontal movement and the radar projection equation, and finally, the optimal parameters of the deformation model are inverted iteratively using LOS deformation results obtained by OT method to retrieve the three-dimensional large displacements of the surface. The significant advantage of the method proposed in this article is that it can accurately acquire the 3D large surface displacements using only two SAR amplitude images with the same imaging geometry. To verify the accuracy and reliability of the proposed algorithm, two scenes of high-resolution spotlight TerraSAR-X images are used in this paper to conduct a three-dimensional surface displacement monitoring experiment on a working panel in the Daliuta mining area in Shaanxi Province, China, based on the proposed method. Experimental monitoring results show that the maximum surface subsidence is approximately 4.5 m, and the maximum horizontal movements in the strike and dip directions are approximately 1.4 m and 1.2 m, respectively. Using GPS measurements to verify the monitoring results, the root mean square error (RMSE) of vertical subsidence is 6.8 cm, and the RMSE of horizontal movement is 7.1 cm. Compared with those in the original mining subsidence model, the accuracies of vertical subsidence and horizontal movement in the proposed model are increased by 28.2% and 37.5%, respectively, which proves the reliability and accuracy of the proposed method.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3