Alterations of RNA Modification in Mouse Germ Cell-2 Spermatids Under Hypoxic Stress

Author:

He Tong,Guo Huanping,Xia Lin,Shen Xipeng,Huang Yun,Wu Xiao,Jiang Xuelin,Xu Yinying,Tan Yi,Zhang Yunfang,Tan Dongmei

Abstract

Hypoxia is a known stress factor in mammals and has been shown to potentially impair male fertility, which manifests as spermatogenic dysfunction and decreased semen quality. Studies have shown that RNA modifications, the novel post-transcriptional regulators, are involved in spermatogenesis, and hypoxia-induced alterations in RNA modification in testes and sperm cells may be associated with impaired spermatogenesis in mice. However, the molecular mechanisms via which RNA modifications influence spermatogenesis under hypoxic stress conditions are unclear. In this study, we generated a mouse Germ Cell-2 spermatid (GC-2spd) hypoxia model by culturing cells in a 1% O2 incubator for 48 h or treating them with CoCl2 for 24 h. The hypoxia treatment significantly inhibited proliferation and induced apoptosis in GC-2spd cells. The RNA modification signatures of total RNAs (2 types) and differentially sized RNA fragments (7 types of approximately 80 nt-sized tRNAs; 9 types of 17–50 nt-sized sncRNAs) were altered, and tRNA stability was partially affected. Moreover, the expression profiles of sncRNAs, such as microRNAs, tsRNAs, rsRNAs, and ysRNAs, were significantly regulated, and this might be related to the alterations in RNA modification and subsequent transcriptomic changes. We comprehensively analyzed alterations in RNA modification signatures in total RNAs, tRNAs (approximately 80 nt), and small RNAs (17–50 nt) as well as the expression profiles of sncRNAs and transcriptomes in hypoxia-treated GC-2spd cells; our data suggested that RNA modifications may be involved in cellular responses under hypoxic stress conditions and could provide a basis for a better understanding of the molecular mechanisms underlying male infertility.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission

Army Medical University

Publisher

Frontiers Media SA

Subject

Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3