Improved Walking Through an Aperture in a Virtual Environment Transfers to a Real Environment: Introduction of Enriched Feedback and Gradual Increase in Task Difficulty

Author:

Suda Yuki,Fukuhara Kazunobu,Sato Kazuyuki,Higuchi Takahiro

Abstract

Virtual reality (VR) could be used to set up a training protocol to improve one's collision-avoidance behavior. In our previous study, we developed a VR system for training older individuals to walk through an aperture in a manner that is both safe (i.e., no collision) and efficient (i.e., no exaggerated behavior to ensure collision avoidance). In the present study, we made several modifications to the VR system in terms of enriched feedback (vibratory stimulation for virtual collisions and the addition of positive feedback for successful trials) and gradual increase in task difficulty during training to strengthen the skill transfer. Nineteen older adults (74.4 ± 5.3 years of age) and 21 younger adults (25.1 ± 5.0 years of age) participated. They were randomly assigned to one of two training groups: the intervention group (older: n = 10; younger: n = 10) or the control group (older: n = 11; younger: n = 9). The experiment consisted of pre- and post-training tests in a real environment and training in a VR environment. During training, participants held a horizontal bar while stepping in place as if a VR image on the screen were moving in response to their stepping. Participants in the intervention group tried to pass a narrow aperture without collision while attempting to minimize their body rotation to avoid collision as much as possible. The criterion upon which the collision-avoidance behavior was regarded as successful became incrementally more demanding as participants successfully met the previous criterion. Participants in the control group passed through a very wide aperture, so that collision-avoidance behavior was unnecessary. A comparison between pre- and post-training test performances showed that, for both older and younger adults in the intervention group, the spatial margins became significantly smaller, while the success rate remained unchanged. For those in the control group, neither the spatial margin nor the success rate was improved. These results suggest that the three modifications made for the VR system contributed to improvement of the system and helped participants transfer the behavior learned from the VR environment to real walking.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3