Haptic feedback intervention decreases the spatial margin when older adults walk through a narrow space

Author:

Hakamata T.,Muroi D.,Kodama K.,Kondo Y.,Higuchi T.ORCID

Abstract

Abstract Background The ability to avoid obstacles efficiently and safely is important for older adults to prevent injuries from tripping and falling. It is important to find an optimal spatial margin between the body and an obstacle considering both safety and efficiency. One side of finding the optimal margin is to decrease the margin in terms of motor efficiency. In this study, we tested whether fingertip-contact intervention to obtain haptic feedback information to perceive the relationship between body and the environment could immediately improve spatial perception and collision avoidance behavior (an instantaneous effect). Methods Twenty-seven older adults (12 males and 15 females) participated in the experiment. In the intervention of the fingertip-contact group, they lightly touched the edge of a door with both fingertips while walking. The test task before and after the intervention involved grasping a horizontal bar and passing through a narrow opening. As dependent variables, we measured the spatial margin and the collision rate. Results The fingertip-contact group showed a significant decrease in the spatial margin after the intervention. On the other hand, there was no significant improvement in the collision rate after the intervention but rather a decrease only in the control group. Conclusion The results obtained in this study indicate that touching obstacles with the fingertips had an instantaneous effect, leading to efficient movement learning, although a possible side effect of an increased collision rated was also found. The proposed intervention might promote an efficiency-based strategy due to learning the spatial relationship between the body and the environment, and it may suppress the excessive avoidance of older adults.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Public Health, Environmental and Occupational Health,Anthropology,Orthopedics and Sports Medicine,Physiology,Human Factors and Ergonomics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3