A model of temporal and spatial river network evolution with climatic inputs

Author:

Hunt Allen G.,Ghanbarian Behzad,Faybishenko Boris

Abstract

Predicting the temporal and spatial evolution of the river network is part of the Earth's critical zone investigations, which has become an important endeavor. However, modeling integration of the river network and critical zone over millions of years is rare. We address the problem of how to predict integrated river length development as a function of time within a framework of addressing the critical zone depth as a function of time. In case of groundwater-river interaction, we find a non-linear spatio-temporal scaling relationship between time, t, and total river length L, given by tLp with power p being near 1.2. The basis of our model is the presumption that groundwater flow paths are relevant to river integration. As river integration may proceed over disconnected basins with irregular relief, the relevant optimal subsurface flow paths are proposed to be defined within a 3D network, with optimal path exponent 1.43. Because the 2D model of the river length has already been shown to relate to a power of the Euclidean distance across a drainage basin with the predicted universal optimal path exponent from percolation theory, Dopt = 1.21, the optimal groundwater paths should relate to the surface river length with an exponent equaling the ratio 1.43/1.21 = 1.18. To define a predictive relationship for the river length, we need to use specific length and time scales. We assume that the fundamental specific length scale is a characteristic particle size (which is commonly used to define the pore scale flow network), and the fundamental time scale is the ratio of the particle size to the regional groundwater flow rate. In this paper, we consider cases of predicting spatio-temporal scaling of drainage organization in the southwestern USA–the Amargosa, Mojave, Gila (and its tributaries) and the Rio Grande, and Pecos Rivers. For the Mojave and Gila Rivers, theoretical results for time scales of river integration since ca. 10 Ma are quite predictive, though the predicted time scales exceed observation for the Rio Grande and Pecos.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3