Deterministic Tree Networks for Fluid Flow: Geometry for Minimal Flow Resistance Between a Volume and One Point

Author:

Bejan Adrian1,Errera Marcelo R.1

Affiliation:

1. Duke University, Department of Mechanical Engineering and Materials Science, Durham, NC 27708-0300, USA

Abstract

The function of many natural flow systems is to connect by a fluid flow a finite-size volume and one point. This paper outlines a strategy for constructing the architecture of the volume-to-point path such that the flow resistance is minimal (constructal theory1). The given volume is viewed as an assembly of volume elements of various sizes. The main discovery is that the shape of each element can be optimized such that the elemental volume-to-point flow resistance is minimal. This optimization principle applies at every volume scale. The smallest volume element contains a fluid saturated porous medium with Darcy flow, which is collected by and channeled through a high permeability path (e.g., fissure) to one point on the element boundary. The geometric optimization is repeated for larger volume elements, which are constructs (assemblies) of optimized smaller volumes. The flow integrated over each new assembly is channeled through a high-permeability path to a point on the side of the assembly. One remarkable feature of the emerging minimal-resistance flow path is that the high-permeability channels of the various volume elements form a tree network which is completely deterministic. The interstices of the network are filled with low permeability porous medium. The method is extended to applications where the high-permeability paths are empty spaces (e.g., parallel-plate channels). It is shown that when the total void volume is constrained it can be distributed optimally among the volume elements to further decrease the overall flow resistance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3