Non‐Linearity in Mean Annual Peak Flow Scaling With Upstream Basin Area: Insights From Percolation Theory

Author:

Ghanbarian Behzad123ORCID

Affiliation:

1. Department of Earth and Environmental Sciences University of Texas at Arlington Arlington Texas USA

2. Department of Civil Engineering University of Texas at Arlington Arlington Texas USA

3. Division of Data Science, College of Science University of Texas at Arlington Arlington Texas USA

Abstract

ABSTRACTUnderstanding how annual peak flow, , relates to upstream basin area, , and their scaling have been one of the challenges in surface hydrology. Although a power‐law scaling relationship (i.e., ) has been widely applied in the literature, it is purely empirical, and due to its empiricism, the interpretation of its exponent, , and its variations from one basin to another is not clear. In the literature, different values of have been reported for various datasets and drainage basins of different areas. Invoking concepts of percolation theory as well as self‐affinity, we derived universal and non‐universal scaling laws to theoretically link to . In the universal scaling, we related the exponent to the fractal dimensionality of percolation, (i.e., ). In the non‐universal scaling, in addition to , the exponent was related to the Hurst exponent, , characterizing the boundaries of the drainage basin (i.e., ). The depends on the dimensionality of the drainage system (e.g., two or three dimensions) and percolation class (e.g., random or invasion percolation). We demonstrated that the theoretical universal and non‐universal bounds were in well agreement with experimental ranges of reported in the literature. More importantly, our theoretical framework revealed that greater values are theoretically expected when basins are more quasi two‐dimensional, while smaller values when basins are mainly quasi three‐dimensional. This is well consistent with the experimental data. We attributed it to the fact that small basins most probably display quasi‐two‐dimensional topography, while large basins quasi‐three‐dimensional topography.

Funder

University of Texas at Arlington

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3