Interpreting Deep Machine Learning for Streamflow Modeling Across Glacial, Nival, and Pluvial Regimes in Southwestern Canada

Author:

Anderson Sam,Radić Valentina

Abstract

The interpretation of deep learning (DL) hydrological models is a key challenge in data-driven modeling of streamflow, as the DL models are often seen as “black box” models despite often outperforming process-based models in streamflow prediction. Here we explore the interpretability of a convolutional long short-term memory network (CNN-LSTM) previously trained to successfully predict streamflow at 226 stream gauge stations across southwestern Canada. To this end, we develop a set of sensitivity experiments to characterize how the CNN-LSTM model learns to map spatiotemporal fields of temperature and precipitation to streamflow across three streamflow regimes (glacial, nival, and pluvial) in the region, and we uncover key spatiotemporal patterns of model learning. The results reveal that the model has learned basic physically-consistent principles behind runoff generation for each streamflow regime, without being given any information other than temperature, precipitation, and streamflow data. In particular, during periods of dynamic streamflow, the model is more sensitive to perturbations within/nearby the basin where streamflow is being modeled, than to perturbations far away from the basins. The sensitivity of modeled streamflow to the magnitude and timing of the perturbations, as well as the sensitivity of day-to-day increases in streamflow to daily weather anomalies, are found to be specific for each streamflow regime. For example, during summer months in the glacial regime, modeled daily streamflow is increasingly generated by warm daily temperature anomalies in basins with a larger fraction of glacier coverage. This model's learning of “glacier runoff” contributions to streamflow, without any explicit information given about glacier coverage, is enabled by a set of cell states that learned to strongly map temperature to streamflow only in glacierized basins in summer. Our results demonstrate that the model's decision making, when mapping temperature and precipitation to streamflow, is consistent with a basic physical understanding of the system.

Publisher

Frontiers Media SA

Subject

Water Science and Technology

Reference93 articles.

1. TensorFlow: large-scale machine learning on heterogeneous distributed systems;Abadi,2016

2. Towards a benchmark for land surface models;Abramowitz;Geophys. Res. Lett.,2005

3. Identification of local water resource vulnerability to rapid deglaciation in Alberta;Anderson;Nat. Clim. Chang.,2020

4. Evaluation and interpretation of convolutional long short-term memory networks for regional hydrological modelling;Anderson;Hydrol. Earth Syst. Sci.,2022

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3