Modeling the Streamflow Response to Heatwaves Across Glacierized Basins in Southwestern Canada

Author:

Anderson Sam12ORCID,Radić Valentina1ORCID

Affiliation:

1. Department of Earth, Ocean, and Atmospheric Sciences The University of British Columbia Vancouver BC Canada

2. Now at School of Environmental Science Simon Fraser University Burnaby BC Canada

Abstract

AbstractIn addition to having far‐reaching impacts on human health, agriculture, wildfires, ecosystems, and infrastructure, heatwaves control streamflow through the melting of seasonal snow and glacier ice. Despite their importance, there is limited understanding of how heatwaves modify streamflow at regional scales, how these impacts vary by heatwave timing and duration, and how glaciers control the streamflow response. Here, we use a deep learning hydrological model, which has previously been trained, evaluated, and interpreted in southwestern Canada, to simulate the streamflow response to heatwaves at 111 basins in the region. The model, driven by gridded ERA5 reanalysis temperature and precipitation data from 1979 to 2015, is forced by synthetic heatwave conditions that vary in their duration and onset throughout the year. We consider how the streamflow response to heatwaves is sensitive to annual temperatures by adding spatially and temporally uniform warming of 2°C across the study region, under the assumption that the underlying hydrological system behavior remains unchanged. We find that heatwaves, particularly in spring and summer, induce an initial streamflow surplus followed by a streamflow deficit, relative to the non‐heatwave case. In summer, glacier contributions to streamflow partially compensate for streamflow deficits that arise from heatwaves earlier in the melt season. In the scenario with 2°C warmer annual temperatures, heatwaves induce a lesser streamflow response in spring when the seasonal streamflow is most increased due to the advancing freshet. Our findings demonstrate how glaciers buffer the impacts of heatwaves on streamflow, but this buffering effect is expected to diminish as glaciers retreat.

Publisher

American Geophysical Union (AGU)

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3