High Strength Die-Attach Joint Formation by Pressureless Sintering of Organic Amine Modified Ag Nanoparticle Paste

Author:

Shen Xingwang,Li Junjie,Xi ShuangORCID

Abstract

Sintered silver (Ag) die-attach has attracted much attention in power systems with high power density and high operating temperature. In this paper, we proposed a novel surface modification method for Ag nanoparticles with organic amines as a coating agent for enhancing the pressureless sintering performance. This work systematically introduced the Ag nanoparticle modification process, Ag paste preparation, and sintering process and compared the changes in the sintering performance of Ag nanoparticles after modification with four different alkyl chain lengths of amines. The study showed that the sintered films of Ag nanoparticle pastes modified with n-octylamine (NOA) can achieve the lowest resistivity of the sintered film and the highest shear strength of the bonded joints. The resistivity of the sintered Ag film is affected by the grain size and microscopic morphology, and the strength of the bonded joints is also related to the sintering density and the amount of organic residues. The thermal behavior of the Ag particles coated with different amines is measured by thermal analysis. Finally, the mechanism of NOA-modified Ag nanoparticles to improve the sintering performance is proposed. This study can provide effective data and theoretical support for the further promotion and application of nano-Ag pressureless sintering.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3