Integrative Metabolome and Transcriptome Analyses Provide Insights into Carotenoid Variation in Different-Colored Peppers

Author:

Lv Junheng1,Zhang Ruihao12ORCID,Mo Yunrong1,Zhou Huidan1,Li Mengjuan1,Wu Rui1,Cheng Hong1,Zhang Mingxian1,Wang Huasu1,Hua Wei1,Deng Qiaoling1,Zhao Kai1,Deng Minghua1

Affiliation:

1. Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China

2. Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China

Abstract

Carotenoids are important pigments in pepper fruits. The colors of each pepper are mainly determined by the composition and content of carotenoid. The ‘ZY’ variety, which has yellow fruit, is a natural mutant derived from a branch mutant of ‘ZR’ with different colors. ZY and ZR exhibit obvious differences in fruit color, but no other obvious differences in other traits. To investigate the main reasons for the formation of different colored pepper fruits, transcriptome and metabolome analyses were performed in three developmental stages (S1–S3) in two cultivars. The results revealed that these structural genes (PSY1, CRTISO, CCD1, CYP97C1, VDE1, CCS, NCED1 and NCED2) related to carotenoid biosynthesis were expressed differentially in the two cultivars. Capsanthin and capsorubin mainly accumulated in ZR and were almost non-existent in ZY. S2 is the fruit color-changing stage; this may be a critical period for the development of different color formation of ZY and ZR. A combination of transcriptome and metabolome analyses indicated that CCS, NCED2, AAO4, VDE1 and CYP97C1 genes were key to the differences in the total carotenoid content. These new insights into pepper fruit coloration may help to improve fruit breeding strategies.

Funder

Major Science and Technology Projects in Yunnan Province

Joint Project of Basic Agricultural Research in Yunnan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3