The Development of Dark Hyperspectral Absolute Calibration Model Using Extended Pseudo Invariant Calibration Sites at a Global Scale: Dark EPICS-Global

Author:

Karki Padam Bahadur12ORCID,Kaewmanee Morakot2,Leigh Larry2ORCID,Pinto Cibele Teixeira2ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science, South Dakota State University (SDSU), Brookings, SD 57007, USA

2. Image Processing Laboratory, Department of Electrical Engineering and Computer Science, South Dakota State University (SDSU), Brookings, SD 57006, USA

Abstract

This research aimed to develop a novel dark hyperspectral absolute calibration (DAHAC) model using stable dark targets of “Global Cluster-36” (GC-36), one of the clusters from the “300 Class Global Classification”. The stable dark sites were identified from GC-36 called “Dark EPICS-Global” covering the surface types viz. dark rock, volcanic area, and dark sand. The Dark EPICS-Global shows a temporal variation of 0.02 unit reflectance. This work used the Landsat-8 (L8) Operational Land Imager (OLI), Sentinel-2A (S2A) Multispectral Instrument (MSI), and Earth Observing One (EO-1) Hyperion data for the DAHAC model development, where well-calibrated L8 and S2A were used as the reference sensors, while EO-1 Hyperion with a 10 nm spectral resolution was used as a hyperspectral library. The dark hyperspectral dataset (DaHD) was generated by combining the normalized hyperspectral profile of L8 and S2A for the DAHAC model development. The DAHAC model developed in this study takes into account the solar zenith and azimuth angles, as well as the view zenith and azimuth angles in Cartesian coordinates form. This model is capable of predicting TOA reflectance in all existing spectral bands of any sensor. The DAHAC model was then validated with the Landsat-7 (L7), Landsat-9 (L9), and Sentinel-2B (S2B) satellites from their launch dates to March 2022. These satellite sensors vary in terms of their spectral resolution, equatorial crossing time, spatial resolution, etc. The comparison between the DAHAC model and satellite measurements showed an accuracy within 0.01 unit reflectance across the overall spectral band. The proposed DAHAC model uncertainty level was determined using Monte Carlo simulation and found to be 0.04 and 0.05 unit reflectance for the VNIR and SWIR channels, respectively. The DAHAC model double ratio was used as a tool to perform the inter-comparison between two satellites. The sensor inter-comparison results for L8 and L9 showed a 2% difference and 1% for S2A and S2B across all spectral bands.

Funder

USGS EROS

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3