Abstract
Historically stable areas across North Africa, known as pseudo invariant calibration sites (PICS), have been used as targets for the calibration and monitoring of optical satellite sensors. However, two major drawbacks exist for these sites: first is the dependency on a single location to be always invariant, and second is the limited amount of observation achieved using these sites. As a result, longer time periods are necessary to construct a dense dataset to assess the radiometric performance of on-orbit optical sensors and confirm that the change detected is sensor-specific rather than site-specific. This work presents a global land cover classification to obtain an extended pseudo invariant calibration site (EPICS) on a global scale using Landsat-8 Operational Land Imager (OLI) data. This technique provides multiple calibration sites across the globe, allowing for the building of richer datasets in a shorter time frame compared to the traditional approach (PICS), with the advantage of assessing the calibration and stability of the sensors faster, detecting possible changes sooner and correcting them accordingly. This work identified 23 World Reference System two (WRS-2) path/row locations around the globe as part of the global EPICS. These EPICS have the advantage of achieving multiple observations per day, with similar spectral characteristics compared to traditional PICS, while still producing a temporal coefficient of variation (ratio of temporal standard deviation and temporal mean) less than 4% for all bands, with some as low as 2.7%.
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献