Extended Cross-Calibration Analysis Using Data from the Landsat 8 and 9 Underfly Event

Author:

Gross Garrison1,Helder Dennis1,Leigh Larry1ORCID

Affiliation:

1. Image Processing Laboratory, South Dakota State University (SDSU), Brookings, SD 57007, USA

Abstract

The Landsat 8 and 9 Underfly Event occurred in November 2021, during which Landsat 9 flew beneath Landsat 8 in the final stages before settling in its final orbiting path. An analysis was performed on the images taken during this event, which resulted in a cross-calibration with uncertainties estimated to be less than 0.5%. This level of precision was due, in part, to the near-identical sensors aboard each instrument, as well as the underfly event itself, which allowed the sensors to take nearly the exact same image at nearly the exact same time. This initial calibration was applied before the end of the on-orbit initial verification (OIV) period; this meant the analysis was performed in less than a month. While it was an effective and efficient first look at the data, a longer-term analysis was deemed prudent to obtain the most accurate cross-calibration with the smallest uncertainties. The three forms of uncertainty established in the initial analysis, dubbed “Phase 1”, were geometric, spectral, and angular. This paper covers Phase 2 of the underfly analysis; several modifications were made to the Phase 1 process to improve the cross-calibration results, including a spectral correction in the form of a spectral band adjustment factor (SBAF) and a more robust filtering system that used the statistics of the reflectance data to better include important data compared to the more aggressive filters used in Phase 1. A proper uncertainty analysis was performed to more accurately quantify the uncertainty associated with the underfly cross-calibration. The results of Phase 2 showed that the Phase 1 analysis was within its 0.5% uncertainty estimation, and the cross-calibration gain values in this paper were used by USGS EROS to update the Landsat 9 calibration at the end of 2022.

Funder

NASA Radiometric Calibration

USGS EROS Landsat 8-9

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3