Revisiting Pseudo Invariant Calibration Sites (PICS) Over Sand Deserts for Vicarious Calibration of Optical Imagers at 20 km and 100 km Scales

Author:

Bacour CédricORCID,Briottet XavierORCID,Bréon François-MarieORCID,Viallefont-Robinet Françoise,Bouvet Marc

Abstract

In-flight assessment of the radiometric performances of space-borne instruments can be achieved by means of vicarious calibration over Pseudo-Invariant Calibration Sites (PICS). PICS are chosen for the high temporal stability of their surface optical properties combined with a high spatial homogeneity. A first list of the main desert PIC sites was identified 20 years ago for the calibration of medium/coarse spatial resolution instruments in the solar spectral range (400–2500 nm). They are located in the Saharan desert and in the Arabian Peninsula. Six of them have since been endorsed by the CEOS/WGCV/IVOS as reference Calibration/Validation test sites. In this study, we have revisited the list of desert PIC sites at the global scale with the aim of (1) assessing if these twenty PICS are still “optimal”, in terms of temporal stability and spatial uniformity, and using up-to-date multi-spectral remote sensing data, and (2) identifying new calibration sites distributed over other areas of the world. We verified that the original sites remain very relevant, although alternate locations in their close vicinity have slightly better characteristics. We proposed four additional targets with similar characteristics, some of which may offer easier logistical access. In order to support radiative transfer simulations of satellite sensor measurements over the sites, we assessed the abilities of several semi-empirical models to reproduce the spectro-directional signatures of six IVOS sites and the four new candidate sites, and we derived climatologies of the main atmospheric properties (trace gas column load and aerosol optical depth).

Funder

European Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3