Vicarious calibration of the Tropospheric Monitoring Instrument (TROPOMI) short-wave infrared (SWIR) module over the Railroad Valley Playa
-
Published:2023-10-11
Issue:19
Volume:16
Page:4507-4527
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
van Kempen Tim A.ORCID, Rotmans Tim J., van Hees Richard M.ORCID, Bruegge CarolORCID, Fu DejianORCID, Hoogeveen Ruud, Pongetti Thomas J., Rosenberg RobertORCID, Aben Ilse
Abstract
Abstract. The short-wave infrared (SWIR) module of the Tropospheric Monitoring Instrument (TROPOMI) on board the ESA's Sentinel-5 precursor (S5p) satellite has been very stable during its 5 years in orbit. Calibration was
performed on the ground, complemented by measurements during in-flight instrument commissioning. The radiometric response and general performance of the SWIR module are monitored by on-board calibration sources. We show that after 5 years in orbit, TROPOMI-SWIR has continued to show excellent
performance with degradation of at most 0.1 % in transmission and having lost less than 0.3 % of the detector pixels. Independent validation of the instrument calibration, via vicarious calibration, can be done through comparisons with ground-based reflectance data. In this work, ground measurements at the Railroad Valley Playa, a valley in central Nevada that is often used as a reference for satellite measurements, are used to perform vicarious calibration of the TROPOMI-SWIR measurements. This is done using dedicated measurement campaigns as well as automated reflectance measurements within the RADCALNET programme. As such, TROPOMI-SWIR is an excellent test case to explore the methodology of vicarious calibration applied to infrared spectroscopy. Using methodology developed for the vicarious calibration of the OCO-2 and GOSAT missions, the absolute radiometry of TROPOMI-SWIR performance is independently verified to be stable down to ∼ 6 %–10 % using the Railroad Valley when both the absolute and relative radiometric calibrations are applied. Differences with the on-board calibration originate from the bidirectional reflection distribution function (BRDF) effects of the desert surface, the large variety in viewing angles, and the different sizes of footprints of the TROPOMI pixels. Vicarious calibration is shown to be an additional valuable tool in validating radiance-level performances of infrared instruments such as TROPOMI-SWIR in the field of atmospheric composition. It remains clear that for instruments of similar design and resolution to TROPOMI-SWIR, on-board calibration sources will continue to provide superior results due to the limitations of the vicarious calibration method.
Funder
Netherlands Space Office
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference38 articles.
1. Ångström, A.:
On the Unit of Radiation Used in Meteorological Treatises on Actinometry, Mon. Weather Rev., 55, 364, https://doi.org/10.1175/1520-0493(1927)55<364a:OTUORU>2.0.CO;2, 1927. a 2. Bacour, C., Briottet, X., Bréon, F.-M., Viallefont-Robinet, F., and Bouvet, M.:
Revisiting Pseudo Invariant Calibration Sites (PICS) Over Sand Deserts for Vicarious Calibration of Optical Imagers at 20 km and 100 km Scales, Remote Sens.-Basel, 11, 1166, https://doi.org/10.3390/rs11101166, 2019. a 3. Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J.:
MODTRAN6: a major upgrade of the MODTRAN radiative transfer code, in: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, edited by: Velez-Reyes, M. and Kruse, F. A., International Society for Optics and Photonics, SPIE, 9088, 113–119, https://doi.org/10.1117/12.2050433, 2014. a 4. Bouvet, M., Thome, K., Berthelot, B., Bialek, A., Czapla-Myers, J., Fox, N. P., Goryl, P., Henry, P., Ma, L., Marcq, S., Meygret, A., Wenny, B. N., and Woolliams, E. R.: RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range, Remote Sens.-Basel, 11, 2401, https://doi.org/10.3390/rs11202401, 2019. a, b, c, d, e 5. Bruegge, C. J., Chrien, N. L., Ando, R. R., Diner, D. J., Abdou, W. A., Helmlinger, M. C., Pilorz, S. H., and Thome, K. J.:
Early validation of the Multi-angle Imaging SpectroRadiometer (MISR) radiometric scale, IEEE T. Geosci. Remote, 40, 1477–1492, https://doi.org/10.1109/TGRS.2002.801583, 2002. a, b
|
|