Digital Twins for Managing Railway Bridge Maintenance, Resilience, and Climate Change Adaptation

Author:

Kaewunruen SakdiratORCID,AbdelHadi Mohannad,Kongpuang ManwikaORCID,Pansuk WithitORCID,Remennikov Alex M.ORCID

Abstract

Innovative digital twins (DTs) that allow engineers to visualise, share information, and monitor the condition during operation is necessary to optimise railway construction and maintenance. Building Information Modelling (BIM) is an approach for creating and managing an inventive 3D model simulating digital information that is useful to project management, monitoring and operation of a specific asset during the whole life cycle assessment (LCA). BIM application can help to provide an efficient cost management and time schedule and reduce the project delivery time throughout the whole life cycle of the project. In this study, an innovative DT has been developed using BIM integration through a life cycle analysis. Minnamurra Railway Bridge (MRB), Australia, has been chosen as a real-world use case to demonstrate the extended application of BIM (i.e., the DT) to enhance the operation, maintenance and asset management to improve the sustainability and resilience of the railway bridge. Moreover, the DT has been exploited to determine GHG emissions and cost consumption through the integration of BIM. This study demonstrates the feasibility of DT technology for railway maintenance and resilience optimisation. It also generates a virtual collaboration for co-simulations and co-creation of values across stakeholders participating in construction, operation and maintenance, and enhancing a reduction in costs and GHG emission.

Funder

European Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3