Abstract
Innovative digital twins (DTs) that allow engineers to visualise, share information, and monitor the condition during operation is necessary to optimise railway construction and maintenance. Building Information Modelling (BIM) is an approach for creating and managing an inventive 3D model simulating digital information that is useful to project management, monitoring and operation of a specific asset during the whole life cycle assessment (LCA). BIM application can help to provide an efficient cost management and time schedule and reduce the project delivery time throughout the whole life cycle of the project. In this study, an innovative DT has been developed using BIM integration through a life cycle analysis. Minnamurra Railway Bridge (MRB), Australia, has been chosen as a real-world use case to demonstrate the extended application of BIM (i.e., the DT) to enhance the operation, maintenance and asset management to improve the sustainability and resilience of the railway bridge. Moreover, the DT has been exploited to determine GHG emissions and cost consumption through the integration of BIM. This study demonstrates the feasibility of DT technology for railway maintenance and resilience optimisation. It also generates a virtual collaboration for co-simulations and co-creation of values across stakeholders participating in construction, operation and maintenance, and enhancing a reduction in costs and GHG emission.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献