Digital Twins in Construction: Architecture, Applications, Trends and Challenges

Author:

Yang Zhou1,Tang Chao2,Zhang Tongrui3,Zhang Zhongjian1ORCID,Doan Dat Tien4ORCID

Affiliation:

1. Department of Civil Engineering, School of Engineering and Technology, China University of Geosciences (Beijing), Beijing 100083, China

2. Beijing Urban Construction and Surveying Design Research Institute Co., Ltd., Chaoyang, Beijing 100101, China

3. School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China

4. Department of Built Environment Engineering, School of Future Environments, Auckland University of Technology, Auckland 1010, New Zealand

Abstract

The construction field currently suffers from low productivity, a lack of expertise among practitioners, weak innovation, and lack of predictability. The digital twin, an advanced digital technology, empowers the construction sector to advance towards intelligent construction and digital transformation. It ultimately aims for highly accurate digital simulation to achieve comprehensive optimization of all phases of a construction project. Currently, the process of digital twin applications is facing challenges such as poor data quality, the inability to harmonize types that are difficult to integrate, and insufficient data security. Further research on the application of digital twins in the construction domain is still needed to accelerate the development of digital twins and promote their practical application. This paper analyzes the commonly used architectures for digital twins in the construction domain in the literature and summarizes the commonly used technologies to implement the architectures, including artificial intelligence, machine learning, data mining, cyber–physical systems, internet of things, virtual reality, augmented reality applications, and considers their advantages and limitations. The focus of this paper is centered on the application of digital twins in the entire lifecycle of a construction project, which includes the design, construction, operation, maintenance, demolition and restoration phases. Digital twins are mainly moving towards the integration of data and information, model automation, intelligent system control, and data security and privacy. Digital twins present data management and integration challenges, privacy and security protection, technical manpower development, and transformation needs. Future research should address these challenges by improving data quality, developing robust integration methodologies, and strengthening data security measures.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3