Sustainability-Based Lifecycle Management for Bridge Infrastructure Using 6D BIM

Author:

Kaewunruen SakdiratORCID,Sresakoolchai JessadaORCID,Zhou Zhihao

Abstract

A number of bridge infrastructures are rising significantly due to economic expansion and growing numbers of railway and road infrastructures. Owing to the complexity of bridge design, traditional design methods always create tedious and time-consuming construction processes. In recent years, Building Information Modelling (BIM) has been developed rapidly to provide a faster solution to generate and process the integration of information in a shared environment. This paper aims to highlight an innovative 6D BIM approach for the lifecycle asset management of a bridge infrastructure by using Donggou Bridge as a case study. This paper adopts 6D modelling, incorporating 3D model information with time schedule, cost estimation, and carbon footprint analysis across the lifecycle of the bridge project. The results of this paper reveal that raw materials contribute the most embodied carbon emissions, and as the 6D BIM model was developed in the early stage of the lifecycle, stakeholders can collaborate within the BIM environment to enhance a more sustainable and cost-effective outcome in advance. This study also demonstrates the possibility of BIM applications to bridge infrastructure projects throughout the whole lifecycle. The 6D BIM can save time by transforming 2D information to 3D information and reducing errors during the pre-construction and construction stages through better visualisation for staff training. Moreover, 6D BIM can promote efficient asset and project management since it can be applied for various purposes simultaneously, such as sustainability, lifecycle asset management and maintenance, condition monitoring and real-time structural simulations. In addition, BIM can promote cooperation among working parties and improve visualisation of the project for various stakeholders.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference41 articles.

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3