An Improved Differential Evolution for Parameter Identification of Photovoltaic Models

Author:

Yuan Shufu1ORCID,Ji Yuzhang1,Chen Yongxu1,Liu Xin1,Zhang Weijun12

Affiliation:

1. School of Metallurgy, Northeastern University, Shenyang 110819, China

2. State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China

Abstract

Photovoltaic (PV) systems are crucial for converting solar energy into electricity. Optimization, control, and simulation for PV systems are important for effectively harnessing solar energy. The exactitude of associated model parameters is an important influencing factor in the performance of PV systems. However, PV model parameter extraction is challenging due to parameter variability resulting from the change in different environmental conditions and equipment factors. Existing parameter identification approaches usually struggle to calculate precise solutions. For this reason, this paper presents an improved differential evolution algorithm, which integrates a collaboration mechanism of dual mutation strategies and an orientation guidance mechanism, called DODE. This collaboration mechanism adaptively assigns mutation strategies to different individuals at different stages to balance exploration and exploitation capabilities. Moreover, an orientation guidance mechanism is proposed to use the information of the movement direction of the population centroid to guide the evolution of elite individuals, preventing them from being trapped in local optima and guiding the population towards a local search. To assess the effectiveness of DODE, comparison experiments were conducted on six different PV models, i.e., the single, double, and triple diode models, and three other commercial PV modules, against ten other excellent meta-heuristic algorithms. For these models, the proposed DODE outperformed other algorithms, with the separate optimal root mean square error values of 9.86021877891317 × 10−4, 9.82484851784979 × 10−4, 9.82484851784993 × 10−4, 2.42507486809489 × 10−3, 1.72981370994064 × 10−3, and 1.66006031250846 × 10−2. Additionally, results obtained from statistical analysis confirm the remarkable competitive superiorities of DODE on convergence rate, stability, and reliability compared with other methods for PV model parameter identification.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3