Feature Selection by Binary Differential Evolution for Predicting the Energy Production of a Wind Plant

Author:

Al-Dahidi Sameer1ORCID,Baraldi Piero2ORCID,Fresc Miriam2,Zio Enrico23ORCID,Montelatici Lorenzo4

Affiliation:

1. Department of Mechanical and Maintenance Engineering, School of Applied Technical Sciences, German Jordanian University, Amman 11180, Jordan

2. Energy Department, Politecnico di Milano, Via Lambruschini 4, 20156 Milan, Italy

3. MINES-Paris, PSL University, CRC, 06904 Sophia Antipolis, France

4. Research Development and Innovation, Edison Spa, 20121 Milan, Italy

Abstract

We propose a method for selecting the optimal set of weather features for wind energy prediction. This problem is tackled by developing a wrapper approach that employs binary differential evolution to search for the best feature subset, and an ensemble of artificial neural networks to predict the energy production from a wind plant. The main novelties of the approach are the use of features provided by different weather forecast providers and the use of an ensemble composed of a reduced number of models for the wrapper search. Its effectiveness is verified using weather and energy production data collected from a 34 MW real wind plant. The model is built using the selected optimal subset of weather features and allows for (i) a 1% reduction in the mean absolute error compared with a model that considers all available features and a 4.4% reduction compared with the model currently employed by the plant owners, and (ii) a reduction in the number of selected features by 85% and 50%, respectively. Reducing the number of features boosts the prediction accuracy. The implication of this finding is significant as it allows plant owners to create profitable offers in the energy market and efficiently manage their power unit commitment, maintenance scheduling, and energy storage optimization.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3