Crystal Symmetry-Inspired Algorithm for Optimal Design of Contemporary Mono Passivated Emitter and Rear Cell Solar Photovoltaic Modules

Author:

Vais Ram Ishwar1,Sahay Kuldeep2ORCID,Chiranjeevi Tirumalasetty1ORCID,Devarapalli Ramesh3,Knypiński Łukasz4ORCID

Affiliation:

1. Electrical Engineering Department, Rajkiya Engineering College Sonbhadra, Churk 231206, Uttar Pradesh, India

2. Electrical Engineering Department, Institute of Engineering and Technology Lucknow, Lucknow 226021, Uttar Pradesh, India

3. Department of Electrical/Electronics and Instrumentation Engineering, Institute of Chemical Technology, Indianoil Odisha Campus, Bhubaneswar 751013, Orissa, India

4. Faculty of Automatic Control, Robotic and Electrical Engineering, Poznan University of Technology, 60-965 Poznan, Poland

Abstract

A metaheuristic algorithm named the Crystal Structure Algorithm (CrSA), which is inspired by the symmetric arrangement of atoms, molecules, or ions in crystalline minerals, has been used for the accurate modeling of Mono Passivated Emitter and Rear Cell (PERC) WSMD-545 and CS7L-590 MS solar photovoltaic (PV) modules. The suggested algorithm is a concise and parameter-free approach that does not need the identification of any intrinsic parameter during the optimization stage. It is based on crystal structure generation by combining the basis and lattice point. The proposed algorithm is adopted to minimize the sum of the squares of the errors at the maximum power point, as well as the short circuit and open circuit points. Several runs are carried out to examine the V-I characteristics of the PV panels under consideration and the nature of the derived parameters. The parameters generated by the proposed technique offer the lowest error over several executions, indicating that it should be implemented in the present scenario. To validate the performance of the proposed approach, convergence curves of Mono PERC WSMD-545 and CS7L-590 MS PV modules obtained using the CrSA are compared with the convergence curves obtained using the recent optimization algorithms (OAs) in the literature. It has been observed that the proposed approach exhibited the fastest rate of convergence on each of the PV panels.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3