Research on the Rapid Recognition Method of Electric Bicycles in Elevators Based on Machine Vision

Author:

Zhao Zhike12ORCID,Li Songying1,Wu Caizhang1,Wei Xiaobing3

Affiliation:

1. College of Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China

2. Key Laboratory of Grain Information Processing and Control (Henan University of Technology), Ministry of Education, Zhengzhou 450001, China

3. Henan Special Equipment Inspection Technology Research Institute, Zhengzhou 450000, China

Abstract

People are gradually coming around to the idea of living a low-carbon lifestyle and using green transportation, and given the severe urban traffic congestion, electric bicycle commuting has taken over as the preferred mode of short-distance transportation for many. Since batteries are used to power electric bicycles, there are no greenhouse gas emissions while they are in use, which is more in line with the requirement for sustainable development around the world. The public has been increasingly concerned about the safety issues brought on by electric bicycles as a result of the industry’s quick development and the rapid increase in the number of electric bicycles worldwide. The unsafe operation of the elevator and the safety of the building have been seriously compromised by the unauthorized admission of electric bicycles into the elevator. To meet the need for fast detection and identification of electric bicycles in elevators, we designed a modified YOLOv5-based identification approach in this study. We propose the use of the EIoU loss function to address the occlusion problem in electric bicycle recognition. By considering the interaction ratio and overlap loss of the target frames, we are able to enhance localization accuracy and reduce the missed detection rate of occluded targets. Additionally, we introduce the CBAM attention mechanism in both the backbone and head of YOLOv5 to improve the expressive power of feature maps. This allows the model to prioritize important regions of the target object, leading to improved detection accuracy. Furthermore, we utilize the CARAFE operator during upsampling instead of the nearest operator in the original model. This enables our model to recover details and side information more accurately, resulting in finer sampling results. The experimental results demonstrate that our improved model achieves an mAP of 86.35 percent, a recall of 81.8 percent, and an accuracy of 88.0 percent. When compared to the original model under the same conditions, our improved YOLOv5 model shows an average detection accuracy increase of 3.49 percent, a recall increase of 5.6 percent, and an accuracy increase of 3.5 percent. Tests in application scenarios demonstrate that after putting the model on the hardware platform Jeston TX2 NX, stable and effective identification of electric bicycles can be accomplished.

Funder

Natural Science Program of the Henan Provincial Department of Education

High-level Talents Research Start-up Fund Project of Henan University of Technology

Open Project of Key Laboratory of Grain Information Processing and Control

Natural Science Project of Zhengzhou Science and Technology Bureau

Open Project of Henan Engineering Laboratory for Optoelectronic Sensing and Intelligent Measurement and Control

Henan Provincial Science and Technology Research and Development Plan Joint Fund

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3