Integration of ShuffleNet V2 and YOLOv5s Networks for a Lightweight Object Detection Model of Electric Bikes within Elevators

Author:

Su Jingfang1,Yang Minrui1,Tang Xinliang1

Affiliation:

1. School of Information Science, Hebei University of Science and Technology, Shijiazhuang 050018, China

Abstract

The entry of electric bikes into elevators poses safety risks. This article proposes a lightweight object detection model for edge deployment in elevator environments specifically designed for electric bikes. Based on the YOLOv5s network, the backbone network replaces the original CSPDarknet53 with a lightweight multilayer ShuffleNet V2 convolutional neural network, achieving a lightweight backbone network. Swin Transformer modules are introduced between layers to enhance the feature expression capability of images, and a SimAM attention mechanism is applied at the end layer to further improve the feature extraction capability of the backbone network. In the neck network, lightweight and depth-balanced GSConv and VoV-GSCSP modules replace several Conv and C3 basic convolutional modules, reducing the parameter count while enhancing the cross-scale connection and fusion capabilities of feature maps. The prediction network uses the faster-converging and more accurate EIOU error function as the position loss function for iterative training. This article conducts various lightweighting comparison experiments and ablation experiments on the improved object detection model. The experimental results demonstrate that the proposed object detection model, with a model size of only 2.6 megabytes and 1.1 million parameters, achieves a frame rate of 106 frames per second and a detection accuracy of 95.5%. This represents an 84.8% reduction in computational load compared to the original YOLOv5s model. The model’s volume and parameter count are reduced by 81.0% and 84.3%, respectively, with only a 0.9% decrease in mAP. The improved object detection model proposed in this paper can meet the real-time detection requirements for electric bikes in elevator scenarios, providing a feasible technical solution for its deployment on edge devices within elevators.

Funder

Youth Fund Project of the Hebei Provincial Department of Education

Science and Technology Research Project of Hebei Province Colleges and Universities

Publisher

MDPI AG

Reference20 articles.

1. (2022). Analysis of the Current Situation and Future Trends in the Layout of China’s Bicycle and Electric Bicycle Industry. China Bike, 6, 26–33.

2. Discussion on the current situation and prevention and control measures of electric bike fires;Chen;Fire Prot. Ind. (Electron. Ed.),2022

3. Review of YOLO target detection based on deep learning;Shao;J. Electron. Inf.,2022

4. Review of typical target detection algorithms of deep learning;Nan;Comput. Appl. Res.,2020

5. Faster r-cnn: Towards real-time object detection with region proposal networks;Ren;Adv. Neural Inf. Process. Syst.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3