Prediction of Tribological Properties of UHMWPE/SiC Polymer Composites Using Machine Learning Techniques

Author:

Mohammed Abdul Jawad1,Mohammed Anwaruddin Siddiqui2,Mohammed Abdul Samad34ORCID

Affiliation:

1. Department of Information and Computer Science, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

2. Mechanical Engineering Department, Wichita State University, Wichita, KS 67260, USA

3. Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

4. Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Abstract

Polymer composites are a class of material that are gaining a lot of attention in demanding tribological applications due to the ability of manipulating their performance by changing various factors, such as processing parameters, types of fillers, and operational parameters. Hence, a number of samples under different conditions need to be repeatedly produced and tested in order to satisfy the requirements of an application. However, with the advent of a new field of triboinformatics, which is a scientific discipline involving computer technology to collect, store, analyze, and evaluate tribological properties, we presently have access to a variety of high-end tools, such as various machine learning (ML) techniques, which can significantly aid in efficiently gauging the polymer’s characteristics without the need to invest time and money in a physical experimentation. The development of an accurate model specifically for predicting the properties of the composite would not only cheapen the process of product testing, but also bolster the production rates of a very strong polymer combination. Hence, in the current study, the performance of five different machine learning (ML) techniques is evaluated for accurately predicting the tribological properties of ultrahigh molecular-weight polyethylene (UHMWPE) polymer composites reinforced with silicon carbide (SiC) nanoparticles. Three input parameters, namely, the applied pressure, holding time, and the concentration of SiCs, are considered with the specific wear rate (SWR) and coefficient of friction (COF) as the two output parameters. The five techniques used are support vector machines (SVMs), decision trees (DTs), random forests (RFs), k-nearest neighbors (KNNs), and artificial neural networks (ANNs). Three evaluation statistical metrics, namely, the coefficient of determination (R2-value), mean absolute error (MAE), and root mean square error (RMSE), are used to evaluate and compare the performances of the different ML techniques. Based upon the experimental dataset, the SVM technique was observed to yield the lowest error rates—with the RMSE being 2.09 × 10−4 and MAE being 2 × 10−4 for COF and for SWR, an RMSE of 2 × 10−4 and MAE of 1.6 × 10−4 were obtained—and highest R2-values of 0.9999 for COF and 0.9998 for SWR. The observed performance metrics shows the SVM as the most reliable technique in predicting the tribological properties—with an accuracy of 99.99% for COF and 99.98% for SWR—of the polymer composites.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3