Machine Learning-Based Virtual Screening and Molecular Simulation Approaches Identified Novel Potential Inhibitors for Cancer Therapy

Author:

Shahab Muhammad1,Zheng Guojun1,Khan Abbas2,Wei Dongqing2ORCID,Novikov Alexander S.34ORCID

Affiliation:

1. State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

3. Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia

4. Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia

Abstract

Cyclin-dependent kinase 2 (CDK2) is a promising target for cancer treatment, developing new effective CDK2 inhibitors is of great significance in anticancer therapy. The involvement of CDK2 in tumorigenesis has been debated, but recent evidence suggests that specifically inhibiting CDK2 could be beneficial in treating certain tumors. This approach remains attractive in the development of anticancer drugs. Several small-molecule inhibitors targeting CDK2 have reached clinical trials, but a selective inhibitor for CDK2 is yet to be discovered. In this study, we conducted machine learning-based drug designing to search for a drug candidate for CDK2. Machine learning models, including k-NN, SVM, RF, and GNB, were created to detect active and inactive inhibitors for a CDK2 drug target. The models were assessed using 10-fold cross-validation to ensure their accuracy and reliability. These methods are highly suitable for classifying compounds as either active or inactive through the virtual screening of extensive compound libraries. Subsequently, machine learning techniques were employed to analyze the test dataset obtained from the zinc database. A total of 25 compounds with 98% accuracy were predicted as active against CDK2. These compounds were docked into CDK2’s active site. Finally, three compounds were selected based on good docking score, and, along with a reference compound, underwent MD simulation. The Gaussian naïve Bayes model yielded superior results compared to other models. The top three hits exhibited enhanced stability and compactness compared to the reference compound. In conclusion, our study provides valuable insights for identifying and refining lead compounds as CDK2 inhibitors.

Funder

National Key R&D Program of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3