Sustainable Production of Lactic Acid from Cellulose Using Au/W-ZnO Catalysts

Author:

Guo Mingyu1,Zhou Chengfeng1,Cui Yuandong1,Jiang Wei1,Han Guangting1,Jiang Zhan1,Ben Haoxi1,Yang Xiaoli1

Affiliation:

1. State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China

Abstract

The catalytic conversion of cellulose to lactic acid (LA) has garnered significant attention in recent years due to the potential of cellulose as a renewable and sustainable biomass feedstock. Here, a series of Au/W-ZnO catalysts were synthesized and employed to transform cellulose into LA. Through the optimization of reaction parameters and catalyst compositions, we achieved complete cellulose conversion with a selectivity of 54.6% toward LA over Au/W-ZnO at 245 °C for 4 h. This catalyst system also proved effective at converting cotton and kenaf fibers. Structural and chemical characterizations revealed that the synergistic effect of W, ZnO, and Au facilitated mesoporous architecture generation and the establishment of an adequate acidic environment. The catalytic process proceeded through the hydrolysis of cellulose to glucose, isomerization to fructose, and its subsequent conversion to LA, with glucose isomerization identified as the rate-limiting step. These findings provide valuable insights for developing high-performance catalytic systems to convert cellulose.

Funder

National Natural Science Foundation of China

Shandong Taishan Scholars Project

State Key Laboratory of Bio-Fibers and Eco-Textiles in Qingdao University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3