Affiliation:
1. College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
2. Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, China
Abstract
With the gradual depletion of petroleum resources and the increasing global awareness of environmental protection, biodegradable plastics are receiving more and more attention as a green substitute for traditional petroleum-based plastics. Poly (lactic acid) is considered to be the most promising biodegradable material because of its excellent biodegradability, biocompatibility, and good processability. However, the brittleness and high cost limit its application in more fields. Lignin, as the second largest renewable biopolymer in nature after cellulose, is not only rich in reserves and low in cost, but it also has an excellent UV barrier, antioxidant activity, and rigidity. The molecular structure of lignin contains a large number of functional groups, which are easy to endow with new functions by chemical modification. Currently, lignin is mostly treated as waste in industry, and the value-added utilization is insufficient. The combination of lignin and poly (lactic acid) can on the one hand solve the problems of the high cost of PLA and less efficient utilization of lignin; on the other hand, the utilization of lignocellulosic biomass in compounding with biodegradable synthetic polymers is expected to afford high-performance wholly green polymer composites. This mini-review summarizes the latest research achievements of poly (lactic acid)/lignin composites. Emphasis was put on the influence of lignin on the mechanical properties of its composite with poly (lactic acid), as well as the compatibility of the two components. Future research on these green composites is also prospected.
Funder
National Natural Science Foundation of China
Subject
Polymers and Plastics,General Chemistry
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献