Influence of Isothermal Aging on Microstructure and Shear Property of Novel Epoxy Composite SAC305 Solder Joints

Author:

Zhang Peng12,Xue Songbai1ORCID,Liu Lu3ORCID,Wang Jianhao2,Tatsumi Hiroaki2ORCID,Nishikawa Hiroshi2

Affiliation:

1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. Joining and Welding Research Institute, Osaka University, Ibaraki 5670047, Japan

3. Institute of Intelligent Welding and Precision Manufacturing, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

With the rapid iteration of microsystem integrated technology, the miniaturization of electronic devices requires packaging materials with higher reliability. In this work, the microstructure evolution and mechanical properties of novel epoxy composite SAC305 solder joints were studied after isothermal aging to evaluate the enhanced effect of epoxy addition. The thickness variation and morphological evolution of the interfacial layer were analyzed. The results showed that, as the aging time was prolonged, the Cu6Sn5 interfacial layer remarkably coarsened and Cu3Sn compounds formed between the Cu6Sn5 layer and Cu pad due to the continuous atomic diffusion. Compared with the monolithic joint, the epoxy composite SAC305 joints had a lower overall IMC growth rate during aging, closely related to the initial morphologies of the interfacial layers. The shear test results showed an apparent decrease in the shear forces of all the solder joints as the aging time increased. Nevertheless, because of the extra mechanical support provided by the epoxy layer, the epoxy composite joints demonstrated notably enhanced mechanical properties. After 1000 h aging treatment, the shear force of SAC305 joints containing 8 wt.% epoxy was 26.28 N, showing a 24.08% increase over the monolithic joint. Cu-Sn IMCs were detected on the shear fracture of the monolithic joint after 1000 h aging, indicating the fracture occurred near the interface and displayed a ductile/brittle mixed fracture. Concerning the epoxy composite joints, cracks were still initiated and extended within the solder bulk, demonstrating a noticeable enhancement in ductility due to the addition of epoxy.

Funder

National Natural Science Foundation of China

China Scholarship Council

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3