Authorship Identification of a Russian-Language Text Using Support Vector Machine and Deep Neural Networks

Author:

Romanov AleksandrORCID,Kurtukova Anna,Shelupanov Alexander,Fedotova Anastasia,Goncharov Valery

Abstract

The article explores approaches to determining the author of a natural language text and the advantages and disadvantages of these approaches. The importance of the considered problem is due to the active digitalization of society and reassignment of most parts of the life activities online. Text authorship methods are particularly useful for information security and forensics. For example, such methods can be used to identify authors of suicide notes, and other texts are subjected to forensic examinations. Another area of application is plagiarism detection. Plagiarism detection is a relevant issue both for the field of intellectual property protection in the digital space and for the educational process. The article describes identifying the author of the Russian-language text using support vector machine (SVM) and deep neural network architectures (long short-term memory (LSTM), convolutional neural networks (CNN) with attention, Transformer). The results show that all the considered algorithms are suitable for solving the authorship identification problem, but SVM shows the best accuracy. The average accuracy of SVM reaches 96%. This is due to thoroughly chosen parameters and feature space, which includes statistical and semantic features (including those extracted as a result of an aspect analysis). Deep neural networks are inferior to SVM in accuracy and reach only 93%. The study also includes an evaluation of the impact of attacks on the method on models’ accuracy. Experiments show that the SVM-based methods are unstable to deliberate text anonymization. In comparison, the loss in accuracy of deep neural networks does not exceed 20%. Transformer architecture is the most effective for anonymized texts and allows 81% accuracy to be achieved.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3