Inference through innovation processes tested in the authorship attribution task

Author:

Tani Raffaelli GiulioORCID,Lalli Margherita,Tria FrancescaORCID

Abstract

AbstractUrn models for innovation capture fundamental empirical laws shared by several real-world processes. The so-called urn model with triggering includes, as particular cases, the urn representation of the two-parameter Poisson-Dirichlet process and the Dirichlet process, seminal in Bayesian non-parametric inference. In this work, we leverage this connection to introduce a general approach for quantifying closeness between symbolic sequences and test it within the framework of the authorship attribution problem. The method demonstrates high accuracy when compared to other related methods in different scenarios, featuring a substantial gain in computational efficiency and theoretical transparency. Beyond the practical convenience, this work demonstrates how the recently established connection between urn models and non-parametric Bayesian inference can pave the way for designing more efficient inference methods. In particular, the hybrid approach that we propose allows us to relax the exchangeability hypothesis, which can be particularly relevant for systems exhibiting complex correlation patterns and non-stationary dynamics.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3