Automatic text-independent speaker verification using convolutional deep belief network

Author:

Rakhmanenko I.A.1,Shelupanov A.A.1,Kostyuchenko E.Y.1

Affiliation:

1. Tomsk State University of Control Systems and Radioelectronics, prospect Lenina 40, 634050, Tomsk, Russia

Abstract

This paper is devoted to the use of the convolutional deep belief network as a speech feature extractor for automatic text-independent speaker verification. The paper describes the scope and problems of automatic speaker verification systems. Types of modern speaker verification systems and types of speech features used in speaker verification systems are considered. The structure and learning algorithm of convolutional deep belief networks is described. The use of speech features extracted from three layers of a trained convolution deep belief network is proposed. Experimental studies of the proposed features were performed on two speech corpora: own speech corpus including audio recordings of 50 speakers and TIMIT speech corpus including audio recordings of 630 speakers. The accuracy of the proposed features was assessed using different types of classifiers. Direct use of these features did not increase the accuracy compared to the use of traditional spectral speech features, such as mel-frequency cepstral coefficients. However, the use of these features in the classifiers ensemble made it possible to achieve a reduction of the equal error rate to 0.21% on 50-speaker speech corpus and to 0.23% on the TIMIT speech corpus.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3