Thermo-Economic Analysis of Hybrid Solar-Geothermal Polygeneration Plants in Different Configurations

Author:

Calise FrancescoORCID,Cappiello Francesco Liberato,Dentice d’Accadia MassimoORCID,Vicidomini Maria

Abstract

This work presents a thermoeconomic comparison between two different solar energy technologies, namely the evacuated flat-plate solar collectors and the photovoltaic panels, integrated as auxiliary systems into two renewable polygeneration plants. Both plants produce electricity, heat and cool, and are based on a 6 kWe organic Rankine cycle (ORC), a 17-kW single-stage H2O/LiBr absorption chiller, a geothermal well at 96 °C, a 200 kWt biomass auxiliary heater, a 45.55 kWh lithium-ion battery and a 25 m2 solar field. In both configurations, electric and thermal storage systems are included to mitigate the fluctuations due to the variability of solar radiation. ORC is mainly supplied by the thermal energy produced by the geothermal well. Additional heat is also provided by solar thermal collectors and by a biomass boiler. In an alternative layout, solar thermal collectors are replaced by photovoltaic panels, producing additional electricity with respect to the one produced by the ORC. To reduce ORC condensation temperature and increase the electric efficiency, a ground-cooled condenser is also adopted. All the components included in both plants were accurately simulated in a TRNSYS environment using dynamic models validated versus literature and experimental data. The ORC is modeled by zero-dimensional energy and mass balances written in Engineering Equation Solver and implemented in TRNSYS. The models of both renewable polygeneration plants are applied to a suitable case study, a commercial area near Campi Flegrei (Naples, South Italy), a location well-known for its geothermal sources and good solar availability. The economic results suggest that for this kind of plant, photovoltaic panels show lower pay back periods than evacuated flat-plate solar collectors, 13 years vs 15 years. The adoption of the electric energy storage system leads to an increase of energy-self-sufficiency equal to 42% and 47% for evacuated flat-plate solar collectors and the photovoltaic panels, respectively.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3