Renewable Energy Generation Using a Novel Geothermal-Solar Hybrid Power Plant Using RORC

Author:

Ramya K. C. Ramya1,Sheeba Rani S.1,Sivaranjani S.1,Kumar R. Vinoth2

Affiliation:

1. Sri Krishna College of Engineering and Technology,Department of Electrical and Electronics Engineering,Coimbatore,India,

2. New Horizon College of Engineering, Bengaluru,Department of Electrical and Electronics Engineering,Bengaluru,India,

Abstract

A recent survey of energy consumption indicates that there has been exponential growth in the need for renewable energy and also for curbing the growth of fossil fuel reserves. To meet this future need, renewable energy sources are being explored. In this paper, we have proposed a Recuperative Organic Rankine Cycle that operates in conjunction with air-cooled condensers. Solar energy is said to be an energy source that varies periodically, unlike geothermal energy which is available round the clock, to generate electricity continuously. Hence it is a highly recommended source to meet the growing demands for electricity globally. A major contribution to geothermal power development is the progress in Organic Rankine Cycles. These plants are best known for their ability to curb harmful gas emissions, especially that of non condensable gases. There is a significant growth in geothermal power owing to the ORC (Organic Ranking Cycle) power units that are implemented. In this methodology, the working fluid of ORC is made to go through an evaporator where a hot turbine is used to heat the liquid. In this process, the temperature of the preheated liquid is further increased with the aid of solar energy. This heat generated thus is further converted into electricity when the turbine unit causes the expansion of the fluid. Finally, an air cooled condenser is used to condense the final exhaust of the turbine. Combining the two powerful forms of renewable energy (solar and geothermal), it is possible to generate power in such a way that the need for power begins to drop from its peak that it has achieved already. The simulated results define the decline in energy consumption of condensers based on the minimum heat transfer area of the condenser as well as the minimum power consumption of the fans.A recent survey of energy consumption indicates that there has been exponential growth in the need for renewable energy and also for curbing the growth of fossil fuel reserves. To meet this future need, renewable energy sources are being explored. In this paper, we have proposed a Recuperative Organic Rankine Cycle that operates in conjunction with air-cooled condensers. Solar energy is said to be an energy source that varies periodically, unlike geothermal energy which is available round the clock, to generate electricity continuously. Hence it is a highly recommended source to meet the growing demands for electricity globally. A major contribution to geothermal power development is the progress in Organic Rankine Cycles. These plants are best known for their ability to curb harmful gas emissions, especially that of non condensable gases. There is a significant growth in geothermal power owing to the ORC (Organic Ranking Cycle) power units that are implemented. In this methodology, the working fluid of ORC is made to go through an evaporator where a hot turbine is used to heat the liquid. In this process, the temperature of the preheated liquid is further increased with the aid of solar energy. This heat generated thus is further converted into electricity when the turbine unit causes the expansion of the fluid. Finally, an air cooled condenser is used to condense the final exhaust of the turbine. Combining the two powerful forms of renewable energy (solar and geothermal), it is possible to generate power in such a way that the need for power begins to drop from its peak that it has achieved already. The simulated results define the decline in energy consumption of condensers based on the minimum heat transfer area of the condenser as well as the minimum power consumption of the fans. &nbsp;<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3