Dynamic Modelling and Energy, Economic, and Environmental Analysis of a Greenhouse Supplied by Renewable Sources

Author:

Calise Francesco1ORCID,Cappiello Francesco Liberato1ORCID,Cimmino Luca1ORCID,Vicidomini Maria1ORCID

Affiliation:

1. Department of Industrial Engineering, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy

Abstract

This paper regards the design and dynamic modelling of a greenhouse coupled with renewable energy technologies to obtain a hybrid renewable energy plant as an optimal solution in the green farm framework. The considered technologies are PV panels, solar thermal collectors, and a biomass auxiliary heater. The system is also coupled with a pyrogasifier, supplied by wood and agricultural waste in the framework of a biocircular economic approach. To supply the investigated user, with a “green farm” located in Castelvolturno (Naples, South of Italy) reducing the energy consumption and operating costs, all of the main components of the plant were suitably designed. The operation of the designed components was simulated by a dynamic simulation model developed by TRNSYS software and validated by means of the literature results. A comprehensive energy, economic, and environmental analysis of the greenhouse is presented. The main results suggest that the investigated renewable plant reduces the total equivalent CO2 emissions by 148.66 t/y. Considering the current high increases in energy prices as a result of the energy crisis due to the war, the system shows very significant profitability with a simple payback of only 1.7 years.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3