The Microclimate Design Process in Current African Development: The UEM Campus in Maputo, Mozambique

Author:

Chiri Giovanni M.,Achenza Maddalena,Canì Anselmo,Neves Leonardo,Tendas Luca,Ferrari SimoneORCID

Abstract

Even if current action towards sustainability in architecture mainly concerns single buildings, the responsibility of the urban shape on local microclimate has largely been ascertained. In fact, it heavily affects the energy performances of the buildings and their environmental behaviour. This produces the necessity to broaden the field of intervention toward the urban scale, involving in the process different disciplines, from architecture to fluid dynamics and physics. Following these ideas, the Masterplan for the Campus of the University Eduardo Mondlane in Maputo (Mozambique) develops a methodology that integrates microclimatic data and analyses from the initial design model. The already validated software ENVI-met (Version 4.4, ENVI_MET GmbH, Essen, Germany) acts as a useful ‘feedback’ tool that is able to assess the microclimatic behaviour of the design concept, also in terms of outdoor comfort. In particular, the analysis focused on the microclimatic performances of a ‘C’ block typology east oriented in relation to the existing buildings, in Maputo’s specific climatic characteristics. The initial urban proposal was gradually evaluated and modified in relation to the main critical aspects highlighted by the microclimatic analyses, in a sort of circular process that ended with a proposed solution ensuring better outdoor comfort than the existing buildings, and which provided an acceptable balance between spatial and climatic instances.

Funder

Regione Autonoma della Sardegna

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3