Recent Progress and Challenges in Microscale Urban Heat Modeling and Measurement for Urban Engineering Applications

Author:

Dey Shuv1,Joshi Yogendra1

Affiliation:

1. Georgia Institute of Technology Woodruff School of Mechanical Engineering, , Atlanta, GA 30332

Abstract

Abstract This review focuses on progress and emerging challenges in experimentally validated modeling of microscale urban thermal environments over the last two decades. In the last few decades, there has been a surge in urban energy contribution resulting in elevated urban day-/night-time air temperatures. While there is no single solution to urban heat, mitigation strategies can be implemented to minimize the harmful effects of urban heat both on humans and the environment. To study the effects of urban heat, numerical modeling of urban thermal environments has seen a rise in usage of several application specific atmospheric modeling software packages, and multiple studies and reviews have already covered the prolific engineering use cases. However, there are inherent and unintentional biases introduced by each modeling software package, that inhibit validity and accuracy for general engineering use. This review critically analyzes the limitations of current state-of-the-art (SOA) microscale atmospheric modeling approaches and identify necessary areas for improvement. Urban thermal environment models must be validated with measurements to gain confidence in the predictive capabilities. This review will additionally examine the next generation of measurement techniques that leverage advances in computing and communications to create distributed meteorological sensor networks for improved spatial and temporal resolutions, that can provide a rich platform for model validation. High fidelity and accurate simulations of urban thermal environments improve confidence in the study of urban heat, its mitigation, and its impact on urban engineering applications in building energy usage and sustainability.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Reference216 articles.

1. The Energetic Basis of the Urban Heat Island;Oke;Q. J. R. Metereol. Soc.,1982

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3