Evaluation and Validation of Microscale Atmospheric Modeling With Offline Weather Research and Forecasting Model to Parallelized Large-Eddy Simulation Model Forcing Conditions

Author:

Dey Shuv1,Mallen Evan2,Stone Brian2,Joshi Yogendra1

Affiliation:

1. Georgia Institute of Technology G. W. Woodruff School of Mechanical Engineering, , Atlanta, GA 30332

2. Georgia Institute of Technology School of City & Regional Planning, , Atlanta, GA 30332

Abstract

AbstractAs the rate of urbanization increases, local vegetation is being replaced with man-made materials, causing increasingly adverse impacts on the surface-atmosphere energy balance. These negative effects can be simulated by modeling the urban landscapes in question; however, the main challenges of modeling urban thermal environments are the scale and resolution at which to perform such tasks. Current modeling of urban thermal environments is typically limited to either mesoscale (1 –2000 km) or microscale (<1 km) phenomena. In the present work, an open-source framework for one-way upstream coupled multiscale urban thermal environment simulations is examined and validated. This coupled simulation can provide valuable insights into the flow behavior and energy transport between mesoscale and microscale interactions. The mesoscale to microscale boundary conditions are coupled together using simulated data from the advanced research weather research and forecasting model (WRF-ARW), a mesoscale numerical weather prediction software, and assimilating it into parallelized large-eddy simulation model (PALM), a computational fluid dynamics style (CFD-style) software designed for microscale atmospheric and oceanic flows. The multiscale urban thermal environment simulations are tested for grid sensitivity to variations in model input and control parameters, and then experimentally validated against distributed sensor measurements at the Georgia Institute of Technology (Georgia Tech) campus in Atlanta, GA. Validated microscale atmospheric models with heterogeneous domains can be used to project the thermal benefits of urban heat mitigation strategies (increase use of high-albedo surfaces, tree and vegetation cover, and smart growth practices) and advise building energy usage modeling and policies.

Publisher

ASME International

Subject

Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3