Affiliation:
1. Georgia Institute of Technology G. W. Woodruff School of Mechanical Engineering, , Atlanta, GA 30332
2. Georgia Institute of Technology School of City & Regional Planning, , Atlanta, GA 30332
Abstract
AbstractAs the rate of urbanization increases, local vegetation is being replaced with man-made materials, causing increasingly adverse impacts on the surface-atmosphere energy balance. These negative effects can be simulated by modeling the urban landscapes in question; however, the main challenges of modeling urban thermal environments are the scale and resolution at which to perform such tasks. Current modeling of urban thermal environments is typically limited to either mesoscale (1 –2000 km) or microscale (<1 km) phenomena. In the present work, an open-source framework for one-way upstream coupled multiscale urban thermal environment simulations is examined and validated. This coupled simulation can provide valuable insights into the flow behavior and energy transport between mesoscale and microscale interactions. The mesoscale to microscale boundary conditions are coupled together using simulated data from the advanced research weather research and forecasting model (WRF-ARW), a mesoscale numerical weather prediction software, and assimilating it into parallelized large-eddy simulation model (PALM), a computational fluid dynamics style (CFD-style) software designed for microscale atmospheric and oceanic flows. The multiscale urban thermal environment simulations are tested for grid sensitivity to variations in model input and control parameters, and then experimentally validated against distributed sensor measurements at the Georgia Institute of Technology (Georgia Tech) campus in Atlanta, GA. Validated microscale atmospheric models with heterogeneous domains can be used to project the thermal benefits of urban heat mitigation strategies (increase use of high-albedo surfaces, tree and vegetation cover, and smart growth practices) and advise building energy usage modeling and policies.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献