Extracting Turnover Frequencies of Electron Transfer in Heterogeneous Catalysis: A Study of IrO2-TiO2 Anatase for Water Oxidation Using Ce4+ Cations

Author:

Alrushaid MogbelORCID,Nadeem Muhammad A.,Wahab Khaja A.,Idriss HichamORCID

Abstract

Within the context of electron transfer during the catalytic water oxidation reaction, the Ir-based system is among the most active. The reaction, mimicking photosynthesis II, requires the use of an electron acceptor such the Ce4+ cation. This complex reaction, involving adsorbed water at the interface of the metal cation and Ce4+, has mostly been studied in homogenous systems. To address the ambiguity regarding the gradual transformation of a homogenous system into a heterogeneous one, we prepared and studied a heterogeneous catalyst system composed of IrO2, with a mean particle size ranging from about 5 Å to 10 Å, dispersed on a TiO2 anatase support, with the objective of probing into the different parameters of the reaction, as well as the compositional changes and rates. The system was stable for many of the runs that were conducted (five consecutive runs with 0.18 M of Ce4+ showed the same reaction rate with TON > 56,000) and, equally importantly, was stable without induction periods. Extraction of the reaction rates from the set of catalysts, with an attempt to normalize them with respect to Ir loading and, therefore, to obtain turnover frequencies (TOF), was conducted. While, within reasonable deviations, the TOF numbers extracted from TPR and XPS Ir4f were close, those extracted from the particle shape (HR-STEM) were considerably larger. The difference indicates that bulk Ir atoms contribute to the electron transfer reaction, which may indicate that the reaction rate is dominated by the reorganization energy between the redox couples involved. Therefore, the normalization of reaction rates with surface atoms may lead to an overestimation of the site activity.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3