Water Oxidation over Au-Pd/TiO2 as a Substitute for Iridium-Based Catalysts

Author:

Wahab Khaja1ORCID,Idriss Hicham2ORCID

Affiliation:

1. Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

2. Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany

Abstract

Water oxidation is one of the most important reactions needed for a transition to a green economy. The reaction relies on extracting electrons from oxygen anions and is commonly studied using homogenous catalysts based on Ru or Ir metals. Because of Ir scarcity and its relative instability in acidic environments, metals to replace it are sought after. In this study, we have synthesized Au-Pd-based catalysts deposited on TiO2 with different ratios in order to mimic IrO2 valence orbitals (Ir5d) by the hybrid valence orbitals of Au5d and Pd4d and compared their heterogeneous catalytic activity for the evolution of O2 from water in the presence of cerium ammonium nitrate (CAN). Au-Pd-based catalysts were found to be active at a particular nominal atomic ratio. At an atomic ratio of 1 Au to 2 Pd and 1 Au to 3 Pd, the catalysts were active and stable for oxygen production from water. Long-term runs up to 20,000 min still showed the expected stoichiometry between O2 production and CAN consumption (1 to 4). However, catalysts with a reverse ratio were not active. Also, the monometallic catalysts were found to be not active for the reaction. We link the reason for the activity of Au-Pd with this specific ratio to the shape and energy position of their valence band that might be similar to those of IrO2 particles. While the turnover numbers of the Au-Pd-based catalysts were found to be lower than those of IrO2-based catalysts, on the same support in a heterogenous system, there is considerable potential upon further optimization for these two metals to replace IrO2 for a water oxidation reaction.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3