Study of rutile TiO2(110) single crystal by transient absorption spectroscopy in the presence of Ce4+ cations in aqueous environment. Implication on water splitting

Author:

Katsiev K,Idriss HORCID

Abstract

Abstract Ce4+ cations are commonly used as electron acceptors during the water oxidation to O2 reaction over Ir- and Ru-based catalysts. They can also be reduced to Ce3+ cations by excited electrons from the conduction band of an oxide semiconductor with a suitable energy level. In this work, we have studied their interaction with a rutile TiO2(110) single crystal upon band gap excitation by femtosecond transient absorption spectroscopy (TAS) in solution in the 350–900 nm range and up to 3.5 ns. Unlike excitation in the presence of water alone the addition of Ce4+ resulted in a clear ground-state bleaching (GSB) signal at the band gap energy of TiO2 (ca. 400 nm) with a time constant t = 4–5 ps. This indicated that the Ce4+ cations presence has quenched the e-h recombination rate when compared to water alone. In addition to GSB, two positive signals are observed and are attributed to trapped holes (in the visible region, 450–550 nm) and trapped electrons in the IR region (>700 nm). Contrary to expectation, the lifetime of the positive signal between 450 and 550 nm decreased with increasing concentrations of Ce4+. We attribute the decrease in the lifetime of this signal to electrostatic repulsion between Ce4+ at the surface of TiO2(110) and positively charged trapped holes. It was also found that at the very short time scale (<2–3 ps) the fast decaying TAS signal of excited electrons in the conduction band is suppressed because of the presence of Ce4+ cations. Results point out that the presence of Ce4+ cations increases the residence time (mobility) of excited electrons and holes at the conduction band and valence band energy levels (instead of being trapped). This might provide further explanations for the enhanced reaction rate of water oxidation to O2 in the presence of Ce4+ cations.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Electron Transfer between Metal Ions and Photoexcited Semiconductors;The Journal of Physical Chemistry C;2024-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3