Silver/Chitosan Nanocomposites: Preparation and Characterization and Their Fungicidal Activity against Dairy Cattle Toxicosis Penicillium expansum

Author:

Alghuthaymi Mousa A.,Abd-Elsalam Kamel A.ORCID,Shami AshwagORCID,Said-Galive Ernest,Shtykova Eleonora V.,Naumkin Alexander V.ORCID

Abstract

This work aimed to evaluate the fungicide activity of chitosan-silver nanocomposites (Ag-Chit-NCs) against Penicillium expansum from feed samples. The physicochemical properties of nanocomposites were characterized by X-ray fluorescence analysis (XRF), small-angle X-ray scattering (SAXS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The morphological integrity of the nanohybrid was confirmed by electron transmission. By the data of RFA (X-ray fluorescent analysis), the contents of Ag in Ag-chitosan composite were 5.9 w/w%. The size distribution of the Ag nanoparticles incorporated in the chitosan matrix was investigated by SAXS. The main part of the size heterogeneity distribution in the chitosan matrix corresponds to the portion of small particles (3–4 nm). TEM analysis revealed a spherical morphology in the form of non-agglomerated caps, and 72% of the nanoparticles measured up to 4 nm. The minimum inhibitory concentration of NCs was evaluated in petri dishes. Three different concentrations were tested for antifungal activity against the mycotoxigenic P. expansum strain. Changes in the mycelium structure of P. expansum fungi by scanning electron microscopy (SEM) were observed to obtain information about the mode of action of Ag-Chit-NCs. It was shown that NC-Chit-NCs with sizes in the range from 4 to 10 nm have internalized sizes in cells, form agglomerates in the cytoplasm, and bind to cell organelles. Besides, their ability to influence protein and DNA fragmentation was examined in P. expansum. SDS-PAGE explains the apparent cellular protein response to the presence of various Ag-Chit-NCs. The intensity of P. expansum hyphal cell protein lines treated with Ag-Chit-NCs was very thin, indicating that high molecular weight proteins are largely prevented from entering the electrophoretic gel, which reflects cellular protein modification and possible damage caused by the binding of several protein fragments to Ag-Chit-NCs. The current results indicate that Ag-Chit-NCs <10 nm in size have significant antifungal activity against P. expansum, the causative agent of blue mold-contaminated dairy cattle feed.

Funder

Science and Technology Development Fund

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3