Effect of silver nanochitosan on control of seed-borne pathogens and maintaining seed quality of wheat

Author:

Chouhan Divya,Dutta Poulami,Dutta Debojit,Dutta Ankita,Kumar Anoop,Mandal Palash,Choudhuri Chandrani,Mathur PiyushORCID

Abstract

AbstractSeeds, considered as the foundation of agriculture, are invaded by a broad spectrum of seed-borne pathogens. The current study aimed to control seed-borne fungal pathogens of wheat, Aspergillus flavus and A. niger, by using Ag+ nanochitosan (Ag-NC) for nano-priming of seeds and enhancing seed quality. Nanochitosan (NC) and Ag-NC were synthesized using the gelation method and characterized by UV–vis spectrophotometry, FESEM, EDXS, and HRTEM. NC and Ag-NC showed irregular surface topography with an average particle size of 275 and 325 nm, respectively. Antifungal activity of both the nanoparticles at 0.1, 0.2, 0.3, 0.4, and 0.5 mg/mL revealed that Ag-NC at 0.5 mg/mL has completely terminated the mycelial growth of both pathogens. Malonaldehyde content increased to 77.77% in A. flavus and 82.66% in A. niger when exposed to 0.5 mg/mL Ag-NC. High-intensity fluorescence due to oxidative stress was observed in Ag-NC-treated pathogens. Ultra-structural changes in Ag-NC treated pathogenic spores under SEM displayed pronounced membrane damages. Wheat seeds were nano-primed with NC and Ag-NC at 0.5 mg/mL, and fungal load was examined to evaluate the mitigation of pathogenic stress and its effect on seedling growth promotion activity. Ag-NC priming reduced the fungal load and allowed successful seed germination. Ag-NC priming increased the albumin, gliadin, gluten, and glutenin content along with total phenol, reducing sugar and starch levels. Ag-NC priming increased the overall protein levels traced through SDS-PAGE. Seed priming with Ag-NC promotes seed germination, mean germination time, stress tolerance index, vigour, etc. NC and Ag-NC at 0.5 mg/mL showed no cytotoxic effect on the Human Embryonic Kidney (HEK293) cell line that ensures the nanoparticles are non-toxic. Thus, the synthesized nanoparticles exhibit a dual role in antifungal activity and plant growth promotion.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3