An Enhanced Piezoelectric-Generated Power Technique for Qi Wireless Charging

Author:

Elmannai WafaORCID,Elleithy KhaledORCID,Benz Andrew Anthony,DeAngelis Alberto Carmine,Weaver Nick

Abstract

This paper aims to design and implement a robust wireless charging system that utilizes affordable materials and the principle of piezoelectricity to generate clean energy to allow the user to store the energy for later use. A wireless charging system that utilizes the piezoelectricity generated as a power source and integrated with Qi-standard wireless transmission would substantially affect the environment and the users. The approach consists of a full-wave-rectified piezoelectric generation, battery storage, Qi-standard wireless transmission, and Bluetooth Low Energy (BLE) as the controller and application monitor. Three main functions are involved in the design of the proposed system: power generation, power storage, and power transmission. A client application is conceived to monitor the transmission and receipt of data. The piezoelectric elements generate the AC electricity from the mechanical movements, which converts the electricity to DC using the full-wave bridge rectifiers. The sensor transmits the data to the application via BLE protocols. The user receives continuous updates regarding the storage level, paired devices, and remaining time for a complete charge. A Qi-standard wireless transmitter transfers the stored electricity to charge the respective devices. The output generates pulses to 60 voltage on each compression of a transducer. The design is based on multiple parallel configurations to solve the issue of charging up to the triggering value VH = 5.2 V when tested with a single piezoelectric transducer. AA-type battery cells are charged in parallel in a series configuration. The system is tested for a number of scenarios. In addition, we simulate the design for 11.11 h for approximately 70,000 joules of input. The system can charge from 5% to 100% and draw from 98%. Using four piezos in the designed module results in an average output voltage of 1.16 V. Increasing the number of piezos results in 17.2 W of power. The system is able to wirelessly transmit and store power with a stable power status after less than 0.01 s.

Funder

Manhattan College

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3