Enhancing Neonatal Incubator Energy Management and Monitoring through IoT-Enabled CNN-LSTM Combination Predictive Model

Author:

Aryanto I Komang Agus Ady1ORCID,Maneetham Dechrit1ORCID,Crisnapati Padma Nyoman1ORCID

Affiliation:

1. Department of Mechatronics Engineering, Rajamangala University of Technology Thanyaburi, Bangkok 12110, Thailand

Abstract

This research focuses on enhancing neonatal care by developing a comprehensive monitoring and control system and an efficient model for predicting electrical energy consumption in incubators, aiming to mitigate potential adverse effects caused by excessive energy usage. Employing a combination of 1-dimensional convolutional neural network (1D-CNN) and long short-term memory (LSTM) methods within the framework of the Internet of Things (IoT), the study encompasses multiple components, including hardware, network, database, data analysis, and software. The research outcomes encompass a real-time web application for monitoring and control, temperature distribution visualizations within the incubator, a prototype incubator, and a predictive energy consumption model. Testing the LSTM method resulted in an RMSE of 42.650 and an MAE of 33.575, while the CNN method exhibited an RMSE of 37.675 and an MAE of 30.082. Combining CNN and LSTM yielded an RMSE of 32.436 and an MAE of 25.382, demonstrating the potential for significantly improving neonatal care.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3